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ARTICLE INFO ABSTRACT
Keywords: Understanding the phylogenetic diversity and structure of woody communities can explain how deterministic or
Abiotic filtering stochastic processes drive a forest community assembly. This study assessed the tree community’s phylogenetic
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Phylogenetic clustering
Phylogenetic structure
Phylogenetic overdispersion

diversity and structure during secondary succession after shifting cultivation (SC) in the Northern Amazon
Forest. We hypothesized that soil-mediated filtering, rather than habitat filtering based on stand age and
neutrality-based stochastic processes, determines phylogenetic diversity and structure of woody community
along Amazon Forest succession after SC. We used forest inventory data from 45 plots across three sites repre-
senting second-growth forests (SG) having stand ages after shifting cultivation (e.g., 5, 10, 15, and 20 years old)
and an old-growth reference forest (> 100 years old, OG). We tested different linear mixed-effects models to
determine the main effects of soil-mediated filtering (i.e., nutrients and soil texture) and stand age on phylo-
genetic metrics. Phylogenetic diversity (PD) showed a significant difference between SG and OG: the highest PD
was found in OG, whereas the lowest PD was found during the initial successional stage. We found a trend of
phylogenetic structure promoted by soil attributes; the variability of soil texture mainly explained most of the
variation of phylogenetic diversity and structure. Stand age did not demonstrate a significant influence on
phylogenetic metrics across any of the tested models. Higher soil fertility may favor the growth of species from
multiple distant clades, increasing phylogenetic diversity and reducing phylogenetic clustering. However, SC
may affect the fertility content in silt soils of OG and generate soils with a high proportion of sand and low
fertility in SG. Thus, our study demonstrates that soil-mediated abiotic filtering shapes the phylogenetic structure
and diversity of tree communities along Amazon forest succession due to deterministic processes rather than
stand age and neutrality-based stochastic processes.

1. Introduction Therefore, where vegetation can regenerate spontaneously, it may
represent a passive restoration method (Holl and Aide, 2011; Holl,

Second-growth forests regrowing after disturbances represent 2017). The comparison between SG and OG suggested that regenerated
important stages in the recovery of biodiversity and ecosystem services areas shelter higher tree species diversity, due to the coexistence of light-
(Poorter et al., 2016; Rozendaal et al., 2019; Villa et al., 2021). demanding pioneer species and shade-tolerant species from advanced
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successional stages (Chazdon, 2014; Rozendaal et al., 2019; Coelho
et al., 2022). Most studies on tropical forest restoration using a chro-
nosequence approach to compare different successional stages of SG and
OG focused on changes in the taxonomic diversity of tree communities
after disturbance (Jakovac et al., 2015; Mukul and Herbohn, 2016;
Rozendaal et al., 2019). However, a most straightforward and purely
taxon-based approach does not consider ecological differences between
species diversity and forest succession, which may have biased conclu-
sions about the processes underlying forest community assembly
(Purschke et al., 2013). The relative importance of successional habitat
and environmental filtering along forest succession can be inferred by
assessing the phylogenetic relatedness among tree species based on
phylogenetic community analysis (i.e., Purschke et al., 2013; Kleinsch-
midt et al., 2020; Maza-Villalobos et al., 2020; Diniz et al., 2021).

Studies in human-modified tropical landscapes are revealing the ef-
fects of disturbances on the phylogenetic diversity and structure of tree
communities (Pausas and Verdd, 2010; Tucker et al., 2017; Santo-Silva
et al., 2018). The phylogenetic structure of a community reflects the
average level of differences among co-occurring species by measuring
their relatedness (Webb et al., 2002; Cavender-Bares et al., 2009). It can
be used as a backbone for two major types of hypotheses to explain the
processes of plant community assembly: niche-based deterministic hy-
potheses (NDH) and neutrality-based stochastic hypotheses (NSH)
(Webb et al., 2002; Cavender-Bares et al., 2009; Qian et al., 2013, 2020).
NDH propose that abiotic filtering (e.g., habitat and soil conditions)
increases under environmental stress and resource-limited scenarios,
whereas biotic filtering (e.g., competition) increases with the decrease in
environmental stress and wider resource supply (Gotzenberger et al.,
2012; Swenson and Enquist, 2007; Violle et al., 2011).

According to NDH, environmental filtering tends to favor the selec-
tion of species with more similar functional traits and niches, which
leads to phylogenetic clustered communities (Cavender-Bares et al.,
2009; Baraloto et al., 2012; Gastauer and Meira-Neto, 2014), while
factors like competition would cause phylogenetic overdispersion due
the exclusion of close relatives (Webb et al., 2002; Cavender-Bares et al.,
2004; Violle et al., 2011). Conversely, NSH suggests that phylogenetic
and functional differences between species are unimportant and plant
community assembly is shaped by neutral processes, such as temporal
niche dynamics, dispersal limitation, and ecological drift (Hubbell,
2001; Kelly and Bowler, 2009; Ge et al., 2021; Zhou et al., 2021). Under
NSH, therefore, the phylogenetic structure of a community is expected
to not differ from the null expectation of a random structure (Webb
et al., 2002; Kembel and Hubbell, 2006).

Both types of hypotheses (NDH and NSH) have been tested to eval-
uate the drivers of secondary succession in plant communities and
disentangle the changes in the relative importance of deterministic
(biotic and abiotic filtering) and neutral mechanisms for the succes-
sional processes (Swenson et al., 2012; Arroyo-Rodriguez et al., 2015;
Maza-Villalobos et al., 2020; Martinez-Ramos et al., 2021). Previous
studies have shown that abiotic filtering may have a major role in the
phylogenetic clustering of tree communities during the early succes-
sional stage, while the relevance of biotic filtering (i.e., biotic in-
teractions, such as competition) increases during the late-successional
stage (e.g., Letcher, 2010, Letcher et al., 2012; Diniz et al., 2021; Mar-
tinez-Ramos et al., 2021). However, there are scenarios (e.g.,
disturbance-phase) where deterministic processes operate simulta-
neously in species selection and can counteract one another and enhance
a balance on their forces as assembly drivers. This might occur along
secondary forest successions (IMaza-Villalobos et al., 2020) and generate
a random phylogenetic structure (Webb, 2000; Soliveres et al., 2012).

As an example of environmental filtering from soil features, higher
organic matter and silt content increase total exchangeable bases and
soil’s field capacity, reducing several habitat constrictions (e.g., low
nutrient and drought stress), limiting plant growth, and increasing
phylogenetic diversity (Gastauer et al., 2017). However, diversity can
also decrease above certain soil fertility levels in forests due to resource

Ecological Engineering 189 (2023) 106915

use from the interspecific competition (Pena-Claros et al., 2012). On the
other hand, the inverse-texture hypothesis suggests that highly pro-
ductive fine-textured soils (high clay contents) in humid regions tend to
suffer from lacking drainage, while coarse-textured soils in arid or dry
regions have a lower ability to maintain water availability during dry
seasons ( Sala et al., 1988). Despite the importance of the
above-mentioned soil attributes, further research is needed to under-
stand how they, combined with stand age, affect tree community
assembling and phylogenetic diversity along tropical forest successions
after anthropogenic disturbance. This kind of information will provide
valuable insights for evaluating the effectiveness of the transition of
traditional to more sustainable forest management practices in phylo-
genetic diversity.

The Amazon Forest is the most extensive, biodiverse, and carbon-
dense sink in the world while providing essential ecosystem services
(i.e., climate regulation, carbon cycling, and food resources) for human
well-being (Sullivan et al., 2017; Mitchard, 2018; Villa et al., 2020,
2021). However, human-induced land-use changes (i.e., disturbance by
logging, agriculture, forest fires, and forest fragmentation) are the main
drivers causing the loss of biodiversity and ecosystem functioning in this
forest (Lewis et al., 2015; Villa et al., 2018a, 2020; Pontes-Lopes et al.,
2021). Among these pressures, shifting cultivation (SC) is the most
common traditional farm system, which was probably sustainable for
nomadic indigenous populations for centuries (Bush et al., 2015; Villa
et al., 2021). Currently, the non-traditional shifting cultivation is a
consequence of cultural changes of indigenous communities inducing
local-scale expansion and intensification of land use (Heinimann et al.,
2017; Villa et al., 2020, 2021). Hence, understanding the drivers un-
derlying the biodiversity along Amazon forest succession after anthro-
pogenic disturbances is critically relevant to gathering management,
restoration, and conservation strategies. However, studies evaluating
the effects of soil (physical and chemical) properties on the phylogenetic
diversity and structure of plant communities regrowing along secondary
forests succession remain scarce.

This study assesses the tree community’s phylogenetic diversity and
structure during secondary succession after SC in the northern Amazon
forest. We used forest inventory data from 45 plots across three sites
representing SG with different stand ages after shifting cultivation (5,
10, 15, and 20 years old) and an OG (> 100 years old). We established
two main research questions: i) How do phylogenetic diversity and
structure of tree communities change along successional stages? ii) What
are the effects of soil properties and stand ages on phylogenetic structure
and diversity of tree communities? We hypothesized that soil-mediated
filtering rather than habitat filtering based on stand age and neutrality-
based stochastic processes determines the phylogenetic diversity and
structure of woody community along Amazon forest succession after SC.
Thus, we expected that deterministic processes represented by soil-
mediated filtering predominate and promote phylogenetic clustering
of woody communities’ during early successional stage, whereas biotic
filtering (e.g., competitive interactions) gains higher importance during
late-successional stage leading the assembly of communities in which
the phylogenetic overdispersion predominates. Finally, we expected
that harsh soil properties conditions, rather than habitat type, during the
early successional stage impose a strong abiotic filtering effect on
phylogenetic diversity and structure.

2. Material and methods
2.1. Selection of study sites and forest plots

The studied areas are in two Piaroa indigenous communities (Gav-
ilan and Sardi) in the Cataniapo River basin, municipality of Atures,
Amazon State, Venezuela (5°32'28 S, 67°24'13 E, Fig. 1). Both com-
munities were established 60 years ago in the Cataniapo basin, belong to
the Piaroa ethnic group, and maintain traditional SC based on cassava
crop (Manihot esculenta Crantz) (Villa et al., 2018a). The region’s climate
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Fig. 1. Localization of the study area and sampling plots concerning South America (A), Venezuela (B), Amazonas State (C), and the Cataniapo basin (C and D)
showing the distribution of second-growth forest and old-growth forest patches sampled (symbols) The second growth (SG) forest patches sampled at different
successional stages (5, 10, 15, and 20 years old) and old-growth forests (OG, 100 years old) are indicated. Adapted from Villa et al. (2021).



P.M. Villa et al.

is classified as a rainy tropical system, with dry season between
December and January, mean annual rainfall of 2700 mm, and mean
annual temperature of 28 °C. The predominant soil types are Oxisols
(Latosols) and Ultisols (Argisols), with low cation exchange capacity and
nutrient content and high acidity levels. The vegetation is dominated by
semi-deciduous and old-growth lowland forests with SG patches (Villa
et al., 2018a, 2018b).

Semi-structured interviews, with open and qualitative questions
about different aspects related to forest management and shifting
cultivation dynamics, were conducted with owners (Villa et al., 2018b).
The land-use history and stand age of each forest patch were used to
select three sites containing a mosaic of OG and SG. At each site, we
selected four SG with different stand ages (5, 10, 15, and 20 years of
natural regeneration) after a single cycle of traditional shifting cultiva-
tion and one old-growth forest (> 100 years old) (Fig. 2D). From
January 2009 to December 2012, three plots (each 20 m x 50 m = 1000
m?) were established for each SG and OG in each site, totalizing 45 plots

(= 4.5 ha) (Fig. 2C). Sampling sites and forest plots were identified with
the assistance of local farmers and experts.
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2.2. Forest inventory

In each plot, all trees with diameters at breast height (DBH) > 5 cm
were identified to the species level and tagged for measurement. One
specimen of each species was collected, identified by comparison with
specimens of the Julian Steyermark Herbarium of Puerto Ayacucho
(Ministry of the Environment, Amazonas State, Venezuela), and classi-

fied according to the Angiosperm Phylogeny Group (APG - Angiosperm
Phylogeny Group IV, 2016).

2.3. Soil nutrients and texture

In each plot, we collected three samples of topsoil (0-10 cm depth)
evenly distributed within the plot to obtain one composite sample for
chemical and physical analyses. Measurements of soil properties were
carried out in the Soil Analysis Laboratory of the National Institute of
Agricultural Research, following regular protocols (Gilabert de Brito
et al., 2015). The soil pH was determined in water. Acidic components
(H' + AI®") were extracted with Ca(OAc) 0.5 mol L~! buffered to pH
7.0 and quantified via titration with NaOH 0.0606 mol L™!. Exchange-
able cations were extracted in KCl 1 mol.L ™!, and determined via atomic
absorption spectroscopy (Ca?" and Mg?") and titration with NaOH
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Fig. 2. Phylogenetic tree in the second-growth forest (SG) and old-growth forest patches (OG) sampled. Phylogenetic divergence scale is indicated in millions of

years (Myr).
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(AI3*). The available phosphorus (P), Na™, K™, Fe, Cu, Mn and Zn were
extracted with Mehlich-1, and quantified using inductively coupled
plasma optical emission spectrometry (ICP-OES). The remaining P (P-
rem) was obtained using a fine air-dried soil sample containing 60 mg
L7! of P (KHyPO4) and determined by photo colorimetry. Effective
cation exchange capacity (ECEC) was calculated by determining the sum
of cations (Ca2+, Mg2+, Na't, KT, and A*H). In contrast, the total cation
exchange capacity (CEC) was estimated using the bases of sum (BS) and
potential acidity H' + Al3+). We determined the bases saturation index
(V) and Al saturation index (m). Organic C was determined by the
Walkley-Black method without heating. The organic matter (OM) con-
tent was estimated by multiplying organic C by 1.724 (OM = Walkley-
Black C x 1.724). Sodium Saturation Index indicates the proportion of
soluble sodium concerning total cation exchange capacity. Granulo-
metric analysis (clay, silt, coarse, and fine sand contents) was performed
using the pipette method.

2.4. Data analyses

All analyzes were performed in the R program 4.2.1 (R Core Team,
2020), using different packages. For phylogenetic analyses, we used two
R packages, the V.PhyloMaker to reconstruct our phylogenetic tree by
pruning our list of species to the mega-tree GBOTB.extend (Jin and Qian,
2019), and the “picante” package to calculate the phylogenetic diversity
and structure metrics (Kembel et al., 2010). We used the ‘ggstatsplot’
package (Patil, 2022), which is an extension of ggplot2 package (Hadley,
2015), for creating graphics with details from statistical tests included in
the information-rich plots themselves (Patil, 2022).

The principal component analysis was performed using the “Facto-
MineR” package (Husson et al., 2017); then, synthetic variables were
extracted using PCA axes following soil properties.

We used linear mixed-effects models (LMMs) to test the main effects
of stand age and soil properties on different phylogenetic metrics, while
including forest patches and plots as random effects, using the “Ime4”
package (Bates et al., 2019). Further, we employed the multi-model
criteria selection for the mixed models using ‘MuMIn’ package (Bar-
ton, 2017). We also used the estimates of the predictors’ coefficients in
all models to interpret parameter estimates on a comparable scale using
the “jtools” package (Long, 2020). To draw the graphs illustration in this
study, we used the ‘ggplot2’ package (Hadley, 2015).

2.4.1. Phylogenetic diversity and structure analysis

We built a phylogenetic tree based on the mega-tree GBOTB.extend,
which encompasses calibrated phylogenetic data for 74,533 vascular
plant species (Jin and Qian, 2019). We used the function phylo.maker
under evolutionary scenario 3 for creating a data frame of the mega-tree
GBOTB.extended using the function build.nodes.1, which extracts the
largest cluster’s root and basal node information at the genus or family
level (Jin and Qian, 2019). The scenario 3 binds the phylogenetic in-
formation for a genus by including a new tip between the family root
node and basal node to the midway point of the family branch (Qian
et al., 2013). Therefore, the scenario 3 tends to favor the reconstruction
of phylogenies with most of the species phylogenetically resolved.

With the resultant reconstructed phylogeny, we calculated metrics
related to phylogenetic diversity (PD) and dispersion (MPD - mean
pairwise phylogenetic distance, and MNTD — mean nearest taxon dis-
tance) and their standardized effect size (ses) to evaluate the evolu-
tionary relationships of the tree species in the forest types (SG and OG).
For evaluating phylogenetic diversity, i.e., the sum of the branch lengths
of a phylogenetic tree connecting all species in a community (Faith,
1992), we computed the Faith’s PD (expressed in millions of years, Myr).
We analyzed the phylogenetic dispersion with the metrics MPD and
MNTD as indicators of structure patterns in the community assembly (i.
e., clustering and overdispersion). MPD and MNTD are complementary;
MPD estimates the average phylogenetic distance between all co-
occurring species in the entire phylogeny (i.e., from the older clades
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and nodes to the shallower ones), while MNTD is more sensitive to
capture phylogenetic distances between the taxon sharing closer
evolutionary history (i.e., shallower clades and nodes towards the ter-
minals of the phylogeny) (Webb, 2000; Webb et al., 2002, 2008). The
higher the values of PD, the higher the phylogenetic diversity; the higher
the values of MPD and MNTD, the higher the phylogenetic over-
dispersion. Then, we computed the ses (standardized effect size) for PD,
MPD, and MNTD to normalize the influence of the natural correlation
with species number (richness), comparing the observed values with the
ones derived from random communities (Swenson, 2014). For that, we
used an unconstrained null model (Kembel and Hubbell, 2006) under
10,000 randomizations with the algorithm ‘phylogeny.pool’ of the
“picante” package (Kembel et al., 2010, 2015). This null model operates
by generating null (random) communities by drawing species from the
entire pool of species (95 species) with equal probability of being
included in the null communities (Swenson, 2014). Significant negative
values of sesMPD and sesMNTD indicate phylogenetic clustering, while
significant positive values indicate phylogenetic overdispersion.
Congruently, significant negative values of sesPD indicate lower
phylogenetic diversity and positive values higher phylogenetic diversity
than the expected by chance. We calculated PD, MPD, MNTD and their
ses’ values using the functions ses.pd., ses.mpd, and ses.mntd, respec-
tively, of the “picante” package (Kembel et al., 2010).

2.4.2. Principal component analysis

We summarized soil variables by scores of the axes of principal
component analysis (PCA, Fig. S1 from Supplementary material). To
avoid the substantial presence of correlated soil attributes, we consid-
ered the first axis of PCA as the proxies for soil fertility (PCA1f) and
variability in soil texture (PCA1t) (Villa et al., 2018a; Schmitz et al.,
2020). Therefore, we defined the first PCA axis for soil fertility (PCA1f)
and texture (PCA1t) variables (Figs. S2 and S3).

2.4.3. Statistical analyses

Firstly, we checked the data distribution based on the normality
assumption using formally Shapiro-Wilk tests and visually Q-Q (Quan-
tile-Quantile) plots (Crawley, 2013). Then, we checked the indepen-
dence of the data between groups and within each group (forest types by
successional stage), which was collected from a representative and
randomly selected portion of the total population. Finally, we tested the
homogeneity of variances using Bartlett’s test based on an assumption
that the variances of the different groups should be equal in the pop-
ulations (i.e., homoscedasticity).

To address the first question, ‘How do phylogenetic diversity and
structure of tree communities change along sucessional stages?’, we
compared the average of the phylogenetic metrics among forest stand
ages by applying a Kruskal-Wallis (for non-normally distributed data)
and one-way ANOVA (for normally distributed data). We used a Kruskal-
Wallis test to compare PD, MPD, sesMPD, MNTD and sesMNTD between
stand age followed by a posteriori Dunn’s test (Dinno 2017). Conversely,
to compare the average of sesPD among forest types we applied a One-
way ANOVA; the pairwise differences between stand age were outlined
by applying multiple comparisons of means based on Tukey’s post hoc
test (HSD = 0.05), using the “car” package in the software R (Fox et al.,
2017).

2.4.4. Linear mixed-effects models

To address the second question, ‘What are the effect of soil properties
and stand age on phylogenetic structure and diversity of tree commu-
nities?’, we tested the influence of soil physical properties (PCA1t),
chemical properties related to soil fertility (PCA1f), and stand age on
phylogenetic metrics (ses.PD, ses.MPD and ses.MNTD) using linear
mixed-effects models (LMMs). The PD and standardized effect size for
MPD and MNTD were selected as response variables in separate models
to dilute the influence of their natural correlation with non-standardized
metrics. For these models, the predictors regarding the fixed effects were
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represent by two continuous explanatory variables (chemical and
physical properties of soils) and one variable factor (i.e., stand ages).
Forest patches and plots were considered as a random effect (1|Patch:
plot) in all models. The residuals distributions attesting for quality and
predictive performance of models were mainly evaluated by eyes ac-
cording to their distributions in the Q-Q plots and histogram of raw
residuals (Fig. S4); therefore, the Gaussian error distribution was
corroborated (Crawley, 2013). Previously, we selected out the predictor
variables using Spearman correlation to avoid collinearity (r > 0.7 was
considered as non-acceptable collinearity; Dormann et al., 2013). Then,
we tested separate LMMs (Fig. S5 from SM). Finally, we applied a multi-
model selection approach based on Akaike Information Criterion (AIC)
to evaluate the best models reflecting relationships between the phylo-
genetic (target) and soil and stand age variables (predictors). We applied
the ‘dredge’ function in the MuMIn package and the best model was
considered the one with AAICc = 0, which is equally parsimonious in the
overall fit and explanatory quality (Burnham et al., 2011; Matos et al.,
2017; Barton, 2017).

2

Akruskal-walis(4) = 35.93, p = 2.99e-07, Egrdinal =0.82, Clgsy, [0.78, 1.00], ngps = 45
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3. Results

Altogether, 95 tree species belonging to 76 genera and 48 families
were sampled across all 45 plots, which are grouped according to suc-
cession stages (Fig. 2). The richest family were Fabaceae (14 species),
followed by Annonaceae (6), Lauraceae (5), and Lecythidaceae (5).
Specifically, the 36 plots from the SG contained 86 species, 45 genera,
and 38 families, whereas the nine old-growth forest plots contained 74
species, 52 genera, and 46 families.

The difference of phylogenetic diversity (PD) between SG and OG
forests was significant (Fig. 3A). More specifically, the highest PD was
found in OG, whereas the lowest PD was found in the initial successional
stage, 5 years after disturbance (Fig. 3A). No significant differences were
observed between plots with 10, 15, and 20 years of stand age (Fig. 3A).
Significant differences in ses.PD were also observed between SG and OG,
with OG having more significant positive values (Fig. 3B). However,
MPD and ses.MPD showed a similar pattern between SG and OG forests
(Fig. 4A and B), with higher values in the OG forests, but close to zero
indicated possible neutrality. Differences were observed for ses.PD,

Fig. 3. Comparisons of the phylogenetic diversity
and dispersion metrics between the second-growth

Phom-aq; = 2.266-03 forests (SG) along the distinct ages of succession (5,
Piincegim 2 1608608 10, 15, and 20 years old) and the old-growth forest
Hom-ao; % 6.08e-
A Priom-ad, = U0Z (OG). Phylogenetic diversity (PD) (A), ses.PD, stan-
4000 1 Prosiv oy =200 dard effective size of phylogenetic diversity (B). The
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where 5 and 15 years of stand age showed significant negative values (i.
e., significant lower phylogenetic diversity), whereas 10 and 20 years of
stand age showed values close to zero, and OG forests showed the pos-
itive values (Fig. 3B). In contrast, MNTD did not differ significantly
among most of the forest types (Fig. 5A). Meanwhile the sesMNTD did
not differ among SG forests having 5 to 20 years after disturbance
(Fig. 5B), and a phylogenetic clustering was observed for the SG forests
having 5 years after disturbance compared to OG forests close to zero
(Fig. 5B).

From the best model selection approach (AAIC < 2), we found that
variation of phylogenetic diversity and structure was mainly explained
by the variability of soil texture (PCA1t), which consistently explained
more variation in the different phylogenetic metrics and across all tested
models (Fig. 6; Table 1). The PD was significantly and positively influ-
enced by the PCA1t (LMM, Estimate = 0.51, t = 6.67, p = 0.001), which
explains 61% of their variation (Fig. 6A). Moreover, we detected that
variation of ses.MPD was significantly and positively affected by PCA1t
(LMM, Estimate = 0.21, t = 3.04, p < 0.009) and PCA1f (LMM, Estimate
= 0.13, t = 3.15, p < 0.007), which together explain 88% of variation

100
(n=9)

(Fig. 6B and C; Table 1). According to the best models, the variability of
soil texture (PCA1t) was the main predictor with the strongest positive
effects on ses.MNTD (LMM, Estimate 0.42, t = 6.6, p = 0.001)
explaining 73% of variation (Fig. 6D, Table 1). Stand ages did not
demonstrate significant influence on the phylogenetic metrics across
any tested models (Table 1). The random intercepts of the models
demonstrated the largest variance of the random effects of patch and
plot of the forest sites for the main effect of soil fertility on sesPD and the
smallest variance for the main effect of stand age on sesPD (Table 1).

4. Discussion

In this study, we evaluate the relative importance of soil properties
and stand age on phylogenetic diversity metrics, we found that the
phylogenetic metrics are context-dependent after disturbances caused
by shifting cultivations in forests (Kraft et al., 2015 ). We corroborate the
hypothesis that tree communities show phylogenetic clustering in initial
successional stages, whereas old-growth forests show phylogenetic
neutrality probably due to the alternated forces of action, from abiotic to



P.M. Villa et al.

2 ~2
Xkruskal-walis(4) = 6-13,0 =0.19, &

1=0.14, Closy, [0.07, 1.00], nops =45

Ecological Engineering 189 (2023) 106915

Fig. 5. Comparisons of the mean nearest neighbor

ordina distance (MNTD) (A), and standard effective size of
| MNTD, ses.MNTD (B) between second-growth forests
160 A and old-growth forest patch (OG). The mean value
(red point) is presented for different stand age (5, 10,
15, and 20 years old) and in an old-growth forest
140+ (OG). The values above horizontal brackets indicate
the p-values (Dunn, P < 0.05) of the significance of
Tmedian = 127.80 the comparisons between stand ages. The estimated
a — effect size and confidence interval (CI) level are
[ Umedian = 119.00 ~ T indicated. (For interpretation of the references to
120 1 Hmedian = 115.78 . L R
z —— colour in this figure legend, the reader is referred to
= ﬁ ian=116.84 o~ ol the web version of this article.)
median 2 Wmedian = 115.35 )
100 1
{
80 1
5 10 15 20 100
(n=9) (n=9) (n=9) (n=9) (n=9)
Stand age
2 ~2
Akruskal-walis(4) = 22.68, p = 1.47e-04, € ;. = 0.52, Clgse, [0.45, 1.00], nops =45
PHoim-aq. = 6.65€-05
B ' PhHolm.adj. = 0-05
PHolm-adj. = 0.02
2 Priolm-adj. = 3.66-03
1 \
a [
g 01 /‘I’\ P ﬁmedian = 4
g I / \ Himedian = -0.79
Bt ﬁmedian =-1.38| =< == 7 g 2 .
\ / fimedan =-1.02 Y
24
{
3
5 10 15 20 100
(n=9) (n=9) (n=9) (n=9) (n=9)
Stand age

biotic filtering, during succession. In addition, our study demonstrates
that both soil-mediated filtering and neutrality-based stochastic process
can determine phylogenetic structure of SG. However, we infer that the
observed change from clustered to random phylogenetic structure is
shaped by the relative role of environmental filtering (e.g., deterministic
processes by soil constrictions) compared to limiting similarity during
succession, as reported for late-successional stage of tropical forests (e.
g., Letcher, 2010; Letcher et al., 2012). Thus, environmental filtering
and deterministic processes may be important when the harsh ecological
condition after shifting cultivation promotes higher species turnover
through colonization and regrow.

Overall, our study supports the hypothesis that phylogenetic struc-
ture and diversity of tree community along Amazon forest succession is
predominantly shaped by deterministic processes such as soil-mediated
filtering and competition, rather than stand ages and neutrality-based
stochastic processes (Kraft et al., 2015). Moreover, early-successional
soil conditions work as an environmental filter, determining phyloge-
netic clustering of woody communities, whereas biotic factors would
contribute to reduce this clustering in OG forests. Thus, our results

support the general assumption that soil is a key factor for plant diversity
components (i.e., taxonomic, functional, and phylogenetic) at local scale
in multiple ecosystems (Villa et al., 2018b; Campos et al., 2021; Gas-
tauer et al., 2017).

The impact of environmental (abiotic) and biotic filtering and sto-
chastic processes on the phylogenetic diversity and structure of woody
communities along Amazon forest succession is still poorly known.
Although studies have shown that stand age can represent a strong
predictor of diversity in plant communities during tropical forests suc-
cessions (Becknell and Powers, 2014; Villa et al., 2018b), our results
highlight the opposite. Soil-related properties were the most important
predictors to explain phylogenetic diversity, probably because more
phylogenetically-distant species can coexist by using soil resources in
different ways and thus occupy the niche space (Cavender-Bares et al.,
2009; Ulrich et al., 2014). Hence, environmental filtering may be more
important than stand age mainly during early successional stages,
probably due to the negative impact of SC practices on soil properties
(Kraft et al., 2015, Ulrich et al., 2016).

Most studies evaluating soil-mediated filtering on phylogenetic
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Fig. 6. Relationships between the soil attri-

O butes (PCA1f and PCA1t) and phylogenetic
metrics (PD, sesMPD and sesMNTD). PD:
phylogenetic diversity (A); ses.MPD: stan-

(D) dard effect size of mean pairwise distance);
(B-C); ses.MINTD: standard effective size of
mean nearest taxon) (D). PCA1f (variability
of nutrients content related soil fertility); and
PCA1t (variability of physical properties
related to soil texture). Solid lines represent
the models’ fitted (predicted) values and the
shaded polygons the 95% confidence inter-
val associated with the modeled predictions.
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Best selected (AAIC < 2) linear mixed models (LMM) based on tree global models explaining the relationships between the phylogenetic metrics (response variables;
sesPD, sesMPD and sesMNTD) and soil (PCA1f and PCA1t) and stand age as predictors.

Model Response variable Explanatory variable R? Randon effects Fixed effects Likelyhood AlICc AAIC AICcWt
Model 1 PD ~PCA1t 0.80 0.72 0.91 —46.10 101.2 0.0 0.61*
Model 2 ~ PCA1f 0.72 0.71 0.45 —45.91 103.4 2.15 0.25%
Model 3 ~ Stand age 0.47 0.12 0.23 —47.92 103.4 2.22 0.14
Model 4 sesMPD ~PCA1t 0.68 0.53 0.95 —39.63 88.3 0.0 0.50*
Model 5 ~ PCA1f 0.48 0.48 0.39 —39.83 88.7 0.40 0.38*
Model 6 ~Stand age 0.38 0.21 0.16 —39.49 90.5 2.25 0.12
Model 7 Ses.MNTD ~PCA1t 0.72 0.50 0.87 —45.14 99.3 0.0 0.73*
Model 8 ~PCA1f 0.67 0.48 0.46 —46.29 101.6 2.31 0.18
Model 9 ~Stand age 0.41 0.37 0.27 —45.10 101.7 2.46 0.10

The response variables are indicated: sesPD, standardized effect size of phylogenetic diversity; ses.MPD, standard effect size of mean pairwise;ses. MNTD: standard
effective size of mean nearest taxon. The explanatory variables are indicated: PCA1f (variability of nutrients content related soil fertility); PCA1t (variability of physical
properties related soil texture). Was used separate univariate LMMs models after tested the explanatory variables collinearity. AICc, Akaike criterion corrected for
small samples (AICc); AAICc, the difference between the AICc of a given model and the best model was considered as AAIC = 0); AICcWt, Akaike weights (based on AIC

corrected for small sample sizes). Models with significant effects (*) are indicated.

diversity and structure of plant communities have shown a low phylo-
genetic diversity and phylogenetic clustering under higher stress due to
the nutrient’s deficit for plant growth (Campos et al., 2021; Gastauer
et al., 2017). Higher soil fertility (i.e., organic matter content, nutrients,
and total exchangeable bases) may promote plant growth, which can
increase phylogenetic diversity (Gastauer et al., 2017) and reduce
phylogenetic clustering (Miazaki et al., 2015). Our results sheds light on
the importance of soil texture to the phylogenetic diversity and structure
after shifting cultivations in Amazon forests, indicating the role of
context-dependency in successional stages of restoration. Among the
influential contextual factors, the slash and burn practices might have

affected the soil’s physical and chemical properties before the farming
crop phase (Are et al., 2009; Thomaz, 2009) since the increasing in fuel
material (i.e., aboveground biomass) for burning may intensify the fire
and damage the topsoil properties and functions (Are et al., 2009;
Thomaz, 2009; Thomaz, 2013; Thomaz et al., 2014).

The impact of slash and burn can drive the trajectory of secondary
forest succession by reducing the recovery of vegetation and properties
related to soil fertility and texture (Villa et al., 2018a), which in turn
changes the richness and phylogenetic diversity of tree communities
(Purschke et al., 2013). For instance, after slash and burn, the ash in-
corporates nutrients available for opportunistic species (e.g., annual
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crops) for a short period due to degenerative effects on soil physical
properties, with low ability to retain nutrients and fertility (Certini,
2005; Wuest et al., 2005). In addition, bare soils (i.e., with low vege-
tation cover of annual crops) quickly loses nutrient through the erosion
caused by the direct impact of precipitation and runoff (Cerda and
Doerr, 2008; Thomaz, 2013). As an outcome, most soil nutrients are
leached out soon after the abandonment due to the high sand content
and rainfall in tropical regions (Hattori et al., 2019), and then runoff and
soil loss can decrease exponentially from the burned phase to the early
successional stages of SG (Thomaz, 2013). Such a soil degradation
process affects the fertility content in silt soils of old-growth forest and
let soils in SC with a high proportion of sand and low fertility (Hattori
et al., 2019). However, under unstable conditions, the reduction of
nutrient content can be different between clay-rich and sandy soils
(Hattori et al., 2019).

Our study reveals that agricultural practices, rather than succes-
sional age, are probably the main cause of changes in the patterns of
phylogenetic diversity during forest recovery. The phylogenetic di-
versity increased with increasing soil nutrients and improved soil
texture, and this specific effect seems to be stronger in the later suc-
cessional stages (e.g., old-growth forests). These results might be related
to the fact that sites having high availability of soil nutrients may harbor
diverse species through the availability of niche space in species-rich
forests (Brown, 2014). However, biotic filtering (e.g., competition) be
more intense in the late sucessional stages than in early ones, whereas
the opposite trend might be true for environmental (abiotic) filtering
(Letcher et al., 2012). The environmental conditions change throughout
the succession, that is, the soils are already more fertile in advanced
sucessional stages and therefore no longer represent such a restrictive
filter. Meanwhile, species selected under degraded soils in early suces-
sional stages may be less competitive in OGF, therefore, the environ-
mental filter should not be the same throughout succession until later
stages . However, we found that, while stand age did not influence
phylogenetic diversity, phylogenetic diversity between SG and OG for-
ests were significantly different. These results indicate that soil prop-
erties over time, rather than increasing the time span of stand age alone,
shapes the phylogenetic diversity of trees in Amazon forests. Perhaps
differences in age are not revealed over a period of 20 years, but over 50
years, for example, especially if we consider the regeneration strategy of
tree species, even pioneer ones, must exceed a few decades.

Although the environmental filtering emerges as the main driver of
phylogenetic diversity in the studied Amazonian forest, we have to
consider that relatedness is also dependent upon the functional attri-
butes of the species. Thus, not necessarily communities holding a high
phylogenetic diversity will show a high functional diversity (Cadotte
etal., 2011). One can stick on the expectation that closely related species
are usually ecologically similar and so they have more chances of
co-occurrence ( Cadotte et al., 2009). However, it can be also expected
that closely related species compete strongly due to their ecological
similarity, limiting their coexistence (Berntson and Wayne, 2000; Godoy
et al., 2014). Suppose that phylogenetic structure and diversity patterns
in our study is also an outcome of competitive interactions, the SG for-
ests are occupied by phylogenetically close species in nutrient-limited
sites probably because of the effects of the disturbances by shifting
cultivations. Conversely, phylogenetically distant species sites occupy
the nutrient-rich old-growth forests by having succeed in overcoming
the environmental and biotic filtering processes through time (Cav-
ender-Bares et al., 2009; Kraft et al., 2015).

Our results allow us to resume that the induced changes by shifting
cultivation may affect the relative importance of the ecological pro-
cesses (i.e., deterministic, and stochastic process) and their associated
factors (i.e., abiotic and biotic) along secondary succession, which
determine phylogenetic diversity and structure at a local scale. Overall,
our findings refute that tree communities during early stages after
disturbance are more likely to be composed of more closely related
species than distantly-related species (Verdd and Pausas, 2007, Ding
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et al., 2012). We anticipate that our study will better promote further
research on disturbance intensity and frequency to assess patterns of
phylogenetic diversity and structure in these tree communities.

4.1. Implications for forest management and conservation

Traditionally, SC occupy small areas (0.1-0.8 ha) and have short
cycles of agriculture (1-3 years), followed by fallow periods (i.e., natural
regeneration) when the system is abandoned, representing a sustainable
agricultural system in Amazonas region for a long time (Bush et al.,
2015; Villa et al., 2017, 2021). However, agricultural intensification and
forest degradation can alter patterns of phylogenetic diversity in tree
communities at a landscape scale (e.g., Santo-Silva et al., 2018), which
can be assessed based on phylogenetic diversity and structure metrics to
predict vulnerability to local taxa loss and biotic homogenization. Then,
under this approach, it can be inferred that both sustainable soil man-
agement and diversity of tree species would allow the conservation of
taxa at a local scale, avoiding species loss with forest degradation.

Most studies have demonstrated that stand age is the main predictor
of species richness and soil fertility (Becknell and Powers, 2014; Villa
et al., 2018b; Poorter et al., 2016). Furthermore, successional habitat
filtering by stand age and soil-mediated filtering can simultaneously
determine soil resource availability and temporal changes in species
richness and phylogenetic diversity, thus regulating the successional
trajectories (Letcher et al., 2012; Arroyo-Rodriguez et al., 2015; Villa
et al., 2018b; Rozendaal et al., 2019; Kleinschmidt et al., 2020). Initial
soil properties (i.e. low soil fertility and high sand proportion) during
early-successional conditions (i.e. 5-20 years old of stand age) filter
commonly fast-growing and light-demanding pioneer species that
colonize communities immediately after disturbance (Chazdon, 2014;
Villa et al., 2018b, 2019). Then, replacing SG species with old-growth
species is found to dominate young secondary and mature forests
(Chazdon, 2014; Poorter et al., 2016). Thus, tree species regeneration
strategies (i.e., light-demanding pioneers and shade-tolerant trees) are
also related to successional habitat filtering and soil-mediated filtering
along forest regeneration (Kleinschmidt et al., 2020; Villa et al., 2021).
This succession pattern corroborates that when the environmental filters
and habitat types are acting with higher strength, species with similar
attributes, suitable for those conditions, are sorted predominantly dur-
ing community assembly (Gotzenberger et al., 2012; Kraft et al., 2015).

A growing body of studies on tropical forest recovery are analyzing
the changes of stand-age-dependent forest attributes, such as biotic (i.e.,
tree community diversity, composition, and structure) and abiotic fac-
tors (i.e., chemical, and physical soil properties), in secondary succes-
sion compared to old-growth forests without disturbances (Poorter et al.,
2016; Rozendaal et al., 2019). However, Amazon forest restoration
strategies depend critically on integrative approaches (i.e., Dubey et al.,
20205 Villa et al., 2021) and the understanding of multiple dimensions of
diversity in tree communities (i.e., beyond species number), which can
reveal the high conservation value in human-modified tropical land-
scapes forests (Pausas and Verd, 2010; Tucker et al., 2017; Santo-Silva
et al.,, 2018). We presume that sustainable soil management (organic
agriculture, agroforestry) as the main predictor can determine the
conservation of tree species diversity (taxonomic, functional, and
phylogenetic).

5. Conclusions

This study outlines the relative importance of soil-mediated filtering
versus the direct effect of stand age in shaping phylogenetic diversity
and structure of woody community along Amazon forest succession after
shifting cultivation. We argue that both soil-mediated filtering and
neutrality-based stochastic processes can determine phylogenetic
structure of SG forests. Our study also shows that stand age is not the
direct determinant of tree phylogenetic diversity during tropical forest
succession, but further studies are needed to disentangle the
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mechanisms underlying tree phylogenetic diversity over time and forest
succession. By reducing land-use intensification with permanent sus-
tainable management systems at the landscape scale, it is possible to
mitigate the degradation of physical and chemical soil properties and,
consequently, reduce deforestation of new forest areas for shifting
cultivation, maintaining a pool of species in old-growth forests and SG
forest at different sucessional stages.
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